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ABSTRACT 

Likelihood  ratio tests for the problem:     H :   F  e ^1    versus 
o 1 

H.:   F  ct^-c^T    are defined  for certain nonparametric families 

of distributions  d*"   and   c^T  .     In particular the  likelihood 

ratio test   is defined and shown to be unbiased when   <ß~. 

denotes  the exponential  distributions  (possibly truncated) 
and   c$r  denotes the distributions with  increasing  failure 
rate.    Comparisons are made with competing tests.    The problem 
of testing for  increasing failure  rate average  is also 
exam i ned. 
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LIKELIHOOD  RATIO TESTS FOR RESTRICTED FAMILIES 

1.     Introduction 

Tests for composite hypotheses having optimal   properties  for finite samples 

have been obtained  for various special  problems by an  important principle due to 

Neyman and Pearson  (1928,   1933)  called the  likelihood ratio principle.    This principle 

leads to the  likelihood  ratio test.    Asymptotic properties of this test  for 

parametric families of distributions can be found   in Wilks (1962).     Recently 

a conditional   likelihood  ratio test has been proposed for testing for trend   in a 

stochastic process of Poisson type  [Boswell   (1966)].     This  is a departure  from 

the standard  literature   in that the underlying family of distributions considered 

is essentially nonparametric.    The main result obtained  is the asymptotic distribution 

of the  likelihood  ratio under the null  hypothesis of no trend. 

We consider  likelihood  ratio tests  for certain geometrically restricted 

families of distributions.     For example,  let 

^  =   ! F   |  F(0)  « 0    and     -lo9  LLfiiÜJ    nondecreasing  in    x > 0 

Then   ^T    is  known as  the   IFRA  (for  increasing  failure  rate average)   family of 

distributions.    These distributions play an   important   role  in the mathematical 

theory of  reliability  [Birnbaum,  Esary, and Marshall   (1966)].     However,  not only 

is the  family nonparametric but  there   is no sigma-finite measure relative to which 

all     Fee?"   are absolutely continuous.    Hence,  the  usual  concept of maximum 

likelihood estimate does  not  suffice.     Kiefer and Wolfowitz  (1956,  p.   893)  propose 

a  generalization of  the maximum  likelihood estimate concept which we adopt.     Let 

F.,  F    e<f~and  let     f(-:   F   ,  F  )    denote 
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the Radon-Ntkodym derivative of F. with respect to the measure Induced by F + F 
1   2 

Definition 1 

F is called the maximum likelihood estimate relative to c*" If F satisfies 

n f"  f(X.; F. F) ] 
s 
Fe^i 

I . 

where    X^ ■  (X. , X X  )     is a  random sample from some    f;  eS~. 

This definition  is easily seen to coincide with the usual  definition when the 

family   ^T  Is dominated by a sigma-finite measure. 

Now consider the problem of testing    H  :   F e c?« against  th«; alternative o u 

H.:  F  e (?"-c?^,   where  e^l c «?".    Let    F'     (F)    denote the maximum  likelihood 

estimate  relative to «9".  t^)     in the  sense of definition  I.    We define the 

1 ike 1 ihood ratio statistic   A (X)    based on a random sample    X    as follows: 

Definition 2 

A (X)  is ca11ed the likelihood ratio statistic where 

n I" f(X.; F  F) 

We will be concerned with the properties of A^X) for various restricted 

famil les of distributions c^~c c?~" . 
0 

2.     IFRA Distributions 

Let   c^ »  {F  |   F(0) - 0    and    -1ofl  ^-F(x?1   T   in    x > 0}    and    X - (X,, X2, 

.... X  )    denotes a  random sample from    F  .    We claim that  the maximum likelihood 
n 

it  i 
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estimate    (MLE) FQ    relative to c^l    puts mass at each of tne sample observations. 

To see this suppose c?~    "  {Fi. F.}   where the    F.    probability of the observation 

Xj     is    F^Xj) > 0    for     I  - 1, 2,  .... n    and    F2fX. } ■ 0    for some    k (1 < k < n)  . 

From definition 1   it follows that    F.     Is    MLE     In <ß~    .    Since    F  toT    can put 
1 0 

mass at a  countable number of points we may restrict attention to those F «c3~ 

putting mas? at sample points; i.e., F absolutely continuous w'/th respect to 

X + |x where X is Lebesque measure and ^{A) equals the number of sample 

points in A . The likelihood becomes 

! 

L (X  | F) -    n   F fx }   . 

Prcschan and Marshall   (1967)  have obtained the    ME    under the  IFRA 

assumption.    From the definition of  IFRA distributionswe see that 

(2.1) Ln(X   |  F) -    n    rexp(- XJ^XJ)   - exp(- XjX,)] 

where    0 < X    < X,  < ... < X    .    We maximize  likelihood subject to  these  restrictions _   o _    i — _   p 

by  letting    X    ■ 0    and X    ■ +« .    Letting    A X.  ■ X.   - X.   .    where    X    ■ 0 
o n JJJ-' 0 

and    X   ■ +» , we see that   (2.1) becomes 
n 

n-l n-1     r n -| 
(2.2) Ln(X  |  F) -    n       exp(- A X,    E   X.)   fl   - exp(- A XfX  )]    . 

n " i-l    L '   i+l    J '   '     J 

Maximizing (2.2)  subject to    A X.  > 0 (I  < I  < n)    we see that 

  -  - ■ -— 
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j J: j=iJ 

Since h(x) ■ x (I - x)      is increasing in x (0 < x < l) , it follows that 

where  (Yi < Y2 - '*' - Y ^  's an Independent ordered sample from G . (2.6) 

follows Immediately and the proof of (2.7) is Gimilar. || 

We say that F] < F2 ^'•e•' Fi  is starshaped with respect to F ) if 

FjV^x) 
■    is nondecreasing for x > 0 . From the proof of theorem 2.1 it follows 

that F. ^ F«  impl ies 

Hence the power of the likelihood ratio test is greater at F7 than at F. when 

F. < F . Percentage points for -log A W    are given in Table 1. 

Of course there are many unbiased tests of the IFRA hypothesis. Marshall, 

Walkup ana Wets (1966) have characterized the class of all such tests. These are 

just the tests based on functions f(x., x-, ..., x ) having the properties: 

1) f    is homogenous; 

2) I   x.  df(V  V   • 
1=1 dx. 

•"  V    > 0    for    j  =  1,  2,   ..., n-1 
and al 1 
x,  > x«  > ...  > x    > 0 

1 -    2 - -   n - 

i • -- "\ritt\t   i ii - - ■    -   ^■— 
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The test associated with    f    would  reject    H      if 
o 

■1*1»    'o»     •••>    A   /    >C i      i. n    — 

where    c    is  some suitable critical  number and    X.  > X^ > ....   >X      are the 
1 -   2 - —   n 

usual order statistics  labelled  in  reverse order. 

3-     IFR Distributions 

Let c^   =  [F  (  F(0) = 0    end    - log  fl   - F(x)]    is convex  for    x > 0)  .    This 

is the class of  IFR (for  increasing failure  rate) distributions.     Proschan and 

Pyke  (1965) have proposed a test for constant versus   increasing failure rate. 

Their test   is  based on a statistic considered by M.  G.  Kendall   (1938) and 

H.  B.  Mann  (19^5) and  is essentially a  rank test for trend.    Proschan and Pyke 

show that their test  is unbiased, has good  large sample properties, and  is competitive 

in this sense with certain parametric  tests when the unknown distribution lies 

within some specified parametric family.     However,  sampling experiments   indicate 

that tti?ir test does not have good discriminating power for  relatively small 

samples.    This   is perhaps to be expected since their test does  not use all  of the 

information   in the sample. 

M.  Boswell   (1966)  studied a  similar problem concerning Poisson type processes. 

His statistic based on a conditional maximum likelihood ratio test   is essentially 

the same as  the  likelihood  ratio statistic  studied   in this  section.    The main 

result   in Boswell's paper   is a derivation of  the asymptotic distribution of his 

test statistic.     In contrast, we concentrate on small   sample  results. 

Since  IFR distributions can have a jump at the  right hand end of  their 

interval of  support   it   is clear from definition 1  that we need only consider 

[■^: 

^_^_I_III  im    r     -        -     -..«>-.- 
i-   ■ -'■  ' '    I   '■■■ 
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estimators absolutely continuous with  respect to Lebesgue measure on    [0, X ) 
n 

with a jump at    X^    (see Barlow and Proschan,   (1965),  p.  26).    Hence 

rn-l 

L  (X   |   F) TTftt.) 
L i-l 

F{Xn) 

where f Is the density of F on [0, X ) . Since 

1 - F(x) • exp - /r(u)du where r(u) = f(u)/ri - F(u)] 

for    0 < u < X   , we may write 
~ n x 

r r(u)du 

f(x)  =  r(x) e" 0 0 < x < X 

and 

Hence 

J     r(u)du 

n-1 n      /• 
(3.1) log L  (X   |   F)  =    E    log  r(Xi)   -    E    /     r(u)du     . 

n " M ' i = 1 J 
o 

The problem of maximizing  (3.1)   subject to    r(x)    nondecreasing was solved by 

Grenander  (1956) and   independently by Marshall  and Proschan   (1965).    They show 

that  the problem can be reduced  to maximizing 

n-1 n-1 
E    log r(X.)  -    E    (n  -  i)   (Xi+1   - X.)   r(X.) 
i-l i = l 

subject  to    r(X,)  < r(X-)  < ...   < r(X     .)   .    The maximum  likelihood estimates are, 
I    —        2    ■■ —n-1 

■. ^■:^'■■'■<■■  ■■■■' 
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?"(X|)' v-!:, :<> [^(x^-k,)..!':.:.■'.... (n.^)(xv.i.v.,)] 

for     l»l,2,  ...,n-l.    The maximum likelihood  is 

(3.2) Ln(X  I  ?)-[]t?(X«)l    ''^  '1)  ' 

The exponent on e can be easily verified using the definition of r and observing 

that 

X. 
J ,        ^.i + 1 

Let c^ - {F | F(0) - 0, F(x) - 1 - e"Xx for x < T and F(T) - 1, X > 0, T > 0) 

Then r?"  denotes the class of exponential distributions with possible truncation 

on the right.  Consider now the problem of testing H : F €-9"  versus 3     o o 

H.:   F  ciß'-<ß~  .    The choice of    H      was determined by the fact  that  the    MLE's lo o 
A A 

F      and    F    are both absolutely continuous with respect to Lebesgue measure  in 

[0,  X  )    and place mass at    X     .     The  likelihood under    H      will  be 

L  (X  I  F  ) 
fn-l 1 

.i-1 J 

-XX- 
e      n 

and the maximum likelihood will be 

(3.3) Ln(X | Fo) 

According to definition 2, the likelihood ratio statistic for testing for 

truncated exponent i a lity versus IFR and not truncated exponent ial ity will be 

i 
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(?x) 
(n-D 

n-I 

n-l  n-1 
TTr^X.) 

If 
(n - 1)(X,- XJ       (n  - 2)(X,- XJ 

< .. .  < 

2      1 3     2' Tx- X     ) 
n       n-I 

so that 

P(xi) = (n - nrxTTTi 
1  =1»2,   ■••f n - 

then  (3.^) becomes 

n-l 

*n    & 

n-l 
TT(n 
i=l 

J)(xi+i-x.) 

10 

As   in section 2 we consider  the test,    cp    . which  rejects    H     when 

A"  (X)  < c 
n    -   —   a 

where    c      is determined by 

Pr   {A!!  (Y)   < c   } =  cy 
u   v  n    —   —   Q1 

The asymptotic distribution of    A" (Y)    can be  found   in Boswell   (1966,  p.   1572), 

A table of percentage points obtained using Monte Carlo methods   is contained   in 

Table 2. 

k.     Unbiasedness of the Likelihood Ratio Test  for   IFR 

Like the Proschan-Pyke  test,   the  likelihood   ratio test has greater  power 

under  the alternative  than  under  the null   hypothesis.     To show this we  need to 

introduce some auxilliary  results. 

 •-- ^-'---- -    --   -    - -*'■         Mi • —  .   -  .   . 
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n i 
Given a  sequence of nonnegative  real  numbers     fz.) , plot      Z 2.    versus 

!     i-l 1    J 
i    and   interpolate  linearly between    (0, 0),   (I, z,),   ...   (n,  2, + ... + 2 )   . 

i I n 

Let    Zj  > z-  > ...  > z      denote the  slopes of the  least concave majorant to this 

graph   in successive  intervals.    This operation converts the original  sequence   Into 

a  nonlncreas ing sequence and will  be useful   later on.     For convenience, call 

2j  > 2« > ...  > z      the Brunkized sequence after D.  Brunk (see D. Brunk et.  al. 

(1955)K    Note that    z,  > z. > ...   > z     can also be obtained by successive 
I  "■    z "■ "~    n 

averaging of the original  sequence  until   it becomes nonlncreasing. 

We say that    H(zl,  z. z  )     is a Schur function  If i      2 n ——————. 

(Z.    -   2J  (^      -     —-)     > 

for all  vectors    z and    I, j ■  1, 2,   ..., n .    This concept   Is needed  In the 

following useful   lemma. 

Lemma  1 

Let    (2., z.,  ...,  2 )    and    (2.,  2. z }    denote two nonnegative 1      Z n !       z n 

sequences such that 

and 

E z.  > E z. 
1     ' " 1     ' 

E z. = E z. 

for    r ■  1, 2 n  -  1 

Then the   inequalities are preserved under Brunklzation; 



 , ; _-, r. ^   '1 f   ■   -   I   I 

'i 

■\'...        . > " 

i.e., Z z. > Z z. 
• i  i — . ,  i i=l     i=1 

(r = 1. 2 n - 1) 

(i) 

Z z. = Z z. 
. .  i  • i i 
I=I     i=l 

If H is a Schur function then 

_  _      _      '   <      i 

(ii)    H(z1 , z2, ..., zn) > H(z1, z2 z ) 

Proof: 

(i)   is obvious since  the  least concave majorant  to the    {z.}    sequence 
i 

lies above the  least concave majorant  to the     {z.}    sequence. 
—r —r n „       n "r 

Since  (i)  holds,     z,   > z. > ...  > z  *,  z,   > ...  > 7      and    Z z.  = Z z. 
I—    Z— —   nl~ —   n .i       .i 

we have  (ii) by the Schur,   Ostrowski  theorem  (see Ostrowski   (1952)).  // 

Theorem k. 1 

.-1 
If    G" F(X)     is  convex  for    x > 0,   G(0)  = F(0)  =0    and    X  (Y)    denotes a 

random sample from    F(G)   ,   then 

12 

A"   (X)  < A,   (Y)     . n    -   -    n    - 

Remark 

This proves  the   likelihood  ratio test     A       is  unbiased since   if    F     is     1FR r n 
-x -1 

and    G(x) = 1   - e        for    x > 0  ,  then  G    F     is convex on    x > 0  . 

Proof: 

Let    Y% G'VfX.)     and  note    YT = Y. 
I I i st    i 

■ ■• i      .^— "■   *■ ■    ■ ■■ — 
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Let 
(n   -   OCX.^-XJ 

i       n-I 

1 

7   (n " 'Hx^-x.) 

2i =^i 

(n   -   i)(Y;     - Yp 

F    (n   -   '^Vl-YP 

and 

13 

Since      Y:«G"V(X.)     and    G^F is convex 

(n 

is   increas ing   in     i  =   I,   2 

and  Proschan  (1966)  that 

''('*♦,- <) 
TnT.+r x- 

>     . . . , It  follows  from  lemma 37  (i) of Bari ow 

J '_ 
r 
T z 
1      ' 

n-I     , 
T     2. 
1       ' 

- 7^r~ 
T   z. 
1       ' 

and hence    ^z.   >Ez.     for     r=   ,(2    n.   ,   .     Let     f- 

Brunkized estimates of     (z. }    and     [z]     respectively.     Let 

I     '  " 1     ' '  "   "   '   •     "t     fZj)    and     fz   ]    denote   the 

-H(x? .  x2> 

n-1 

• V,) = TT   x. 
i = l 

and note that       „    is a Schur fu„c.,on.    since    (z,)    a„d    ,.;,    satisfythe 

hypotheses oi   lemma   1,   ft   tollows   that 
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H(2,,   Z   ,   ...,   Z        )   ^-H(z,,   Z- Z        ) 
\       z n-1     — \       £ n-1 

1^4 

Hence 

rn-i 
i)(X.+,.X) 

n-1   n-1 
TT rCX.) 

1 
E(n-i)(Y:-  Yp 

..."In-1   n-1 
TT ?(Y:) 

1 ' 

Since 

r                    ...          .,. n    .,, 
r (n - IHY"- Y ) r Y? 
o              ' ' , i   ' 
————^^——————— <.  i 

r — n 
E (n   -   i)(X^I- X.) r X. 

i+l        i 1 

for    (1   < r < n  -   1)     by  lemma 3.7   (i')  of Barlow and Proschan   (1966)   it   follows that 

n-1 
(^.2) T. (n  -   i)(X. + 1- X.) 

n 
T X, 

< 

n-1 
E (n 
1 

>.'. 

'(v, yP 
T. Y: 

(A.I) and  (A.2)   together   i^iply 

An^ < *n<X) 

The theorem follows  from    (Y  ,  Y   ,   ...,  Y )  =  (Y,,  Y,,  ....  Y  )   .   // 
I      / n   s t      i      / n 

Marshall.Walkup and Wets (1966) have characterized the class of unbiased 

tests for constant failure rate versus nondecreasing failure rdte. These are 

based on functions    h(x1,  x0,  ..., x   )     satisfying the conditions 

... .^.^u^-«^;!-,. .w.,^. .^* ..... 
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i)    h     is homogeneous; 

j                           dM x.,...,   x_ ) 
i<)       S    (x.- x      )  i— Ü-   >0    j -  1,  2,   ....  n  -  I 

for all    x.  >x->...>x    >0.    The corresponding test consists of  rejecting 

exponentiality   if    h(X   ,  X   ,   ..., X )    <   c    where    c     is a suitable critical  number 
\       /. n      — 

and    X,  > Xfl  > ...  > X      are  the order statistics   labelled  in reverse order. 
\ —   2 - —    n 

5-     Distribution of the  Maximum Likelihood Ratio Statistic Under the Exponential 

Assumpt ion 

From the computat io.is   in Boswell   (1966)   it   is  clear that the distribution of 

A    ,  even under the  null  hypothesis,   is exceedingly complicated.     For this  reason 

we have had to use Monte Carlo methods to obtain the  percentage points  tabulated 

ifi Table 2. 

as we show  in 

However,   the distribution of     A      under    H       is  quite  smooth 
n o ^ 

Theorem 5-1 

The  likelihood  ratio  statistic    A      has a  nonincreas ing density on     (0,   1) 

under the exponential   assumption. 

Proof: 

Let    0 = Wrt < W.   < ...   <W      denote an ordered  sample from the  uniform 
-    0 —    1  — —    n r 

distribution on     (0,   1)   .     Let 

U.   = W.   - W.   . i  =   1 ,   2 n  -  1 
i i i -I 

i - ■'- .■»BaMMrife 
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Then the random vector    (11.  U U^,)    has joint density 

(n.l):     for    u    > > 0 

« 1, 2,  ..., n  - 1 

hiuy u2,   .... ",,.!)- 

otherwise. 

< 1 

Let    (LL, TL,   • • • ,  Ü    .)    denote the modified vector    (Up  LL,   ....   U    .)    after 

Brunkization and  subject to    U,  > U«  > .•.   > U    .   . 

The  likelihood  ratio statistic 

^^ =/n      \n-l     n-1   Ä 

n-li 

n-1 
is distributed as     (n-D^TT',     under  the exponent ial   assumpt ion.     Notationally 

it will  be  convenient to  replace    n   -  1     by    n  .    Hence we need only prove that 

P   TT u. <2: 
(i = l 

is  concave   in    z  € (0.   D   -    Let     1     denote the usua 

observe that 

1   indicator set  function and 

Ofu^-.+u^l 

-.    ^■^^•>.—^^_ ,.,... — M. ..  -     ... 
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Integrating out on    u      we have 
n 

r,™»r(nK-j««n»Ss^««9<V»' 

PjTT   U;  < zj    - *'fl^f      f(ul Un-2;  2,dul   ••'  dVl 
i — 

u.+.-.+u    .<! 
I n-1— 

where 

:(u1 un_1;  z) =     /   I   fui«--",, < z]dun 

0<aj <1 -u,-. ,.-u 
-n-1 n-l 

min  [l   - u.   -  ...   - u    ., u  (2)] "l n-l'    n' 

and    u  (z)     is  the  solution of    z * u,   ...  u     1  u n 1 n-1     n 

for fixed    u.,  u   ,   ...,  u    .   . 

We claim that z  is a strictly increasing convex function of u  and, 
n 

therefore,  that    u     is a strictly  increasing concave function of    z   .     It  follows 

that    f(u,,   ...,  u     ,;   2)     is a  concave  funct.on of    z    for fixed     (u.,  u.,   ..,  u    .), 
1 n-1 !       2 n-l 

Hence 

fjU    < z      - nJ  /jT....   (      f(u 
I 1 ) JJ \x^J 

.,...,  u    .;   z)du,   ...   du     , 
s n-i 1 n-i 

u, + ..+u     ,<1 
i n-1 — 

is a  concave  function of    z  . 

To show    z ■  u,   ... u     .u       isa convex function of    u    .    define 
1 n-l     n n 

(u. u    .)     to be  the Brunk modification of    (u,,  u  ,   ...,  u    .)     subject 
1      n-i I  2      n-l 

to 
.*  _* 
u, > u. > ... > u  , . Clearly z  is piecewise convex for u  in 

1 - 2 -    — n-l        '      r n 
the 

-•JV .V- -* 
intervals     [0,  ün_2],   [ün_2,  ^.ol.   ••••   \}   - "] "n-l*  ul ^ '     ''   ls 

therefore sufficient  to  show that    z    has a continuous derivative   in    u    .    We show n 
•k -it 

that the  right and   left hand derivatives at    un « u^    are equal.     For un < u^ 

■■"'"««I—iili mia 

■ 
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. /u.   , + ...+u    .\ n-j-1 
— - u.   ...  u, 1    '       .   . 1 
u 1 J  \       n-1-j / 

For    ti    i  < u    < u
n o n-1 n        n-z 

dz_ 
du 

Ul   '••   "j    l-H ) 

.* 
For    u    = u^  ,   , obviously 

n        n-i 

/UK1 + ---/Vl\    =    /"iV-^Vl^ 

For    n « 2    and    n - 

distribution of    A'CY)   . 

3     it   is a  straightfo.-ward  computation to obtain  the 

Clearly,  for    n = 2 

^(Y)  « U, 

and  the  likelihood  ratio  is  uniformly distributed on    (0,   l)   . 

For    n « 3 

A^Y) - i+ U,   U2 - 
(u, + u2)

: 

if   u, >u2 

if   u, < u2   . 

Hence 

PG|A3W^U //2u    du,   du, +   //     2_    du,   du 

,UlV^ 
u       i —2      'y  - %   ""1     2 

u.+u </ü 
i   ä     2- 

U1^U2 "1^2 

and 

h\^i)<A V 
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Tfie density   is 

It   is easy to check that    g     is decreasing,    g,(0) ■= + «o,  g  (l)  - 1    a 

9^(0)  ■ g,(l)  =  - oo ..    It   is  tempting to conjecture that  this behavior 
■ i 

in general ,   i.e.,    g  (C) « + co,  g  (0)  ■ g  (l)  - - » for    n > 3   • 
n                        n               n — 

\ 
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Percentage  Points 
for   -log  A (Y) 3    n - 

Sample Size 
n .01 

Percent iles 
.05       .90 • 99 

2 0.015 0.072 3-3 u.85 

3 0.2:6 0.480 5.25 7-25 

k 0.6 1.1 6.9 9.0 

5 1.2 1.8 8.6 10.8 

6 1.7 2.5 10.1 12.6 

7 2.k 3-3 11.7 14.3 

8 3-0 4.2 13.2 15.8 

9 3.7 5.0 14.7 17.6 

10 4.6 5-8 16.1 19-2 

Note that we use lower percent!les for testing exponentiality 
versus IFRA and upper percentiles for testing IFRA versus DFRA. 

-^...^ ^  ^•■--  - ■ -  ^■-^- j    ■■^...^.—1.,    -,.  ...-.  .,-■;..,-.„  ,.. ,  .... 
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Percentage Points   for the   IFR 
it 

Likelihood  Ratio Statistic     A_(Y) n — 

Sample Size 
n 

Percet 
• 05 

itiles 
.01 

Number of Random 
S'mulations Used 

2 .0500 .0100 50,000 

3 ,025 .00^4 50,000 

/♦ .0162 .0027 ^40,000 

5 .0125 .0017 50,000 

6 .01 .0015 60,000 

7 .0087 .001 60,000 

8 • 0077 .001 80,000 

9 .0065 .0007 70,000 

10 .0055 .0007 50,000 

- 
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6.       Comparisons with Competing Tests 

In a paper   in process   (Barlow and  Jacobson)  we  study   in   some detail   the 

robustness of  Ihe   IFRA and   IFR   likelihood   ratio tests   relative  to selected  competing 

tests.     Preliminary   investigations   indicate  that   the   IFR  likelihood   ratio test   is 

much better  than     the  Proschan-Pyke  test  for small   samples.     However,   they have 

achieved a   remarkable amount of   information concerning  the asymptotic behavior of 

their  test   statistic.     In  particular  they  show that  their test   statistic,   suitably 

normalized,   has an asymptotic  normal   distribution  for a wide  class of alternative 

distributions.     On  the other hand,   the distribution of  the   IFR   likelihood   ratio 

2 
statistic,   under  the  null   hypothesis,   converges   to a weighted   sum of    X       distributions 

which   is  rather cumbersome  to compute.     For  small   sample  sizes     (say    n < 10)     both 

statistics are   relatively  easy  to compute with the aid  of a desk calculator. 

Ficjure   1    is a  graph of  the  power  functions   for both  tests  against Weibull 

distribution alternatives     (i.e.,     F(x)  =   1   -e for    *   >0    where    a    i s 

the  shape parameter)  when   the  sample  size   is   10 and  the  significance   level   is 

5%.     These curves were obtained  by rruans of Monte Carlo simulation on a computer. 

The power of  the Proschan-Pyke  test   increases very  slowly as  a   function of  the 

Weibull   shape  parameter,     Q/ .     Even when the shape parameter     o = 3   .   the  power   is 

only   .62.     Our numerical   investigaions   indicate that   for    o > 3    the power   increases 

even more  slowly and  that   for    & = 500   ,   the power   is only   .86.     For    n =  20   , 

the power of   the  Proschan-Pyke  test   is  much better;   it  yields  a power of  .92  for 

0 =  ^   .     It   should  be noted,   however,   that  the power of  this   test   is  still   not as 

good  as  the power of the   likelihood   ratio test when    n =  10   . 

The asymptotic   relative efficiency of the Proschan-Pyke  test   relative  to the 

Weibull   likelihood   ratio test when the  true distribution   is of the  form    G(x)  = 

1 - e (fy > 1)     for    x > 0    was computed to be   .59   (see   Proschan-Pyke   (1965)). 

The asymptotic  relative efficiency of  their test   relative to the gamma  likelihood 

___^M 
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ratio test when  the   true distribution   is   the  gamma   is  only   .20.     Unfortunately, 

asymptotic  evaluation of  the   IFR   likelihood   ratio  test   seems   to  be  extremely  difficult. 

There  are  many additional   unbiased  tests  of  exponentlality  versus   IFRA  or 

IFR which  should  perhaps  be   considered.     Recall   that   all   of  the  associated 

statistics  are  necessarily  homogeneous.     A  statistic   related  to  the   IFR   likelihood 

rat io  stat ist ic   is 

n 
\   W'lr-] JT  (n-i*0 (X, -X,.,) 

i ' 

If  there  are  no   reversals  of   the  normalized  differences   (they  should  decrease  under 

IFR alternatives)   then     A      and     A        agree except   for  the   factor    n X       and  a 
n       n I 

constant.  If G  F  is convex, then 

n  - - n  - 

The test which rejects exponentiality when  A  (X)  is sufficiently large is related 

to a test derived by Moran (1950 for a  problem concerning renewal processes.  Under 

the assumption of exponential ity 

-2 log Ar"(Y) 
W = —■ £  

1 + n+1 
6n 

2 
is asymptotically distributed as a X  variable with  n - 1  degrees of freedom. 

Epstein's (i960) test 8 uses this statistic. Monte Carlo experiments by Ztlen 

(1961) indicate that the power of this test is less than that of the Proschan-Pyke 

test for small samples against Weibull distribution alternatives. 

In section 2 we proved that  F < G  implies 

-  - ■-"■' -fr-^-"!-^------'-—■■•^«•--  •■    J- ■■ ^ ■■   -■.    -■■- -    n   111 . --' 
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Hence we   could  consider   the   test ,  which   rejects  exponentiality   in   favor of 

the   IFRA  hypothesis  when     A  (X)   > c. where 

P.     A  (Y)   > c,       /    =   1   -  P-     A  (Y)   < c,      I =  r>     . 
G   (   n -   -     1-^ i G  |   n -   —     1-o 

For this test we would use the upper percentile points of  -log A (X)  given in 

Table 1.  Since  A (X)  i? essentially the maximum likelihood under the IFRA 
n — 

assumption it Is perhaps not too surprising that it seems superior to the IFR 

likelihood ratio test (see Fig. I).  On the basis of computer calculations we 

conjecture that  -log A (Y), suitably norme 1ized, is asymptotically N(0, l) . 
n  — 

Perhaps  a  better   test   than  all   of  those  considered  so   far   is  a  un i form 

conditional   test   [see  Cox  and  Lewis   (1966)  p.   153] based on   the mean of  the 

rectangular  distribution.     This  has   been described  by  Bartholomew as   the  oldest 

known  statistical   test   'see  discussion   in Cox   (1955)]-     Epstein   (i960)   adapted   this 

test   to  the   life  testing  problem  and  called   it   test   3-     The   test   is  based on  the 

total   time  on  test  up   to  the     i-th     order  statistic     (i   =   1,   2,   ...,   n),   i.e., 

T   (X.)   =     Y. (n   -  j +  1)   (X.   -  X.     )   . 
'          j=l J J- 

n-l n 
The   test   statistic   is       T.    T(X.)/ E X.   . Under  the  exponential   hypothesis 

i = l 1 

n -1 ,•      11     n 

v    T(X.)    - A^ii-    T. X 
I             ' 2 1 

E X.   v/[n -  1)/12 
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is approximately    N(0,   1)     even  for   relatively  small     n  .     If    F  < G   ,   then   it 

folios  from Theorem 3-12   (Mi)   [Barlow and  Proschan   (1966)]    that 

n-1 n-1 
ZT(X.) ZT(Y.) 
1 '        .      1 ' 

n ■;    n 

Z X.        st     I Y. 
1      ' 1      ' 

Hence a natural test, cp   , rejects exponent ial i ty in 

n-1  T(X.) 
favor of   IFRA   if I    —    > c 

.        n —     <y 

E X. 

where 
!n-l n 1 

Z T(Y.)/  Z Y.   > c       =  a 
1 '        1      '   "    ^ 

Empirical   sampling    by  Zelen and Dannemiller   [(1961),   p.   ^7]  indicates  that   this 

test   is superior   to    cp against Weibull   distribution alternatives.      Investigations 

by  Cox  (1955)   show  that   the  analogue  of  this   test   for   randomness   in  a  sequence 

of  events   is   the  most   powerful   test   of   the  Poisson  hypothesis  against   the  alternative 

of a  time-dependent   Poisson process with occurrence   rate 

>.(t)  = 
o^Bt 

See Bartholomew (1956) for further results concerning this test. 

7.  Concluding Remarks 

It is perhaps worth noting that the percentage points in Table 2 and the results 

of section^also apply to the Boswell test for trend in a stochastic process of 

Poisson type.  However, if the sample size is  n and one is using the Boswell 

statistic then one should locate percentage points in Table 2 corresponding to 

.. ...^.^^^i ^:,^.- ...>- 
1 — - - ^~-~*~* 
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the  number    n +  1   .    A  proof  for unbiasedness of  the  Boswell   test  can be made, 

patterned after  the  techniques  of  section ^t. 

The  number of  possible   likelihood   ratio  tests which may be constructed  using 

the  definitions   in  section   1    is   fairly   large.     Recall   that   the  DFR   (for  decreasing 

failure   rate)   maximum   likelihood  estimate   is  absolutely  continuous when     F(0)   =  0 

[Marshall  and   Proschan   (1965)]-     Hence  one  can  construct  a   likelihood   ratio  test 

for   the   following  problems: 

(I) versus 
H„: F  a truncated exponential 
0 

H   F  DFR anc then IFR  (F(0) = 0) 

versus 
H : F  IFR 

H,: F DFR and then IFR (F(0) = 0) 

Note that the maximum likelihood estimates under both the hypothesis and the 

alternative in each case will be absolutely continuous except at the largest 

observation,  X  , if we impose the additional restriction F(0) = 0 . 
n 

Clearly we can also construct a maximum 1ike1 ihood test for 

(3) versus 
H   F  truncated DFR 

H : F  DFR and then IFR. 

There   is  no difficulty   in  constructing  maximum   likelihood  tests   for  the  problems: 

CO 

and 

(5) 

versus 

versus 

H   :    F     exponent ia1 

H   :    F     DFR     (F(0)   =   0) 

H0:    F     DFR     (F(0)   =   0) 

H   :    F     has  decreasing  density      (F(0)   =   0) 

and     F     not   DFR 

«■«MkMMM 
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The maximum  likelihood estimate assuming a  decreasing density   is  given by Grenander 

(1956).     Recall   that   if    F    is OFR,  then   it  has a decreasing density. 

Likelihood   ratio tests  for the   two  sample problem will   be considered   in a 

subsequent paper. 

■   " ..-^.-vA-.. 4.-- - ■- -    — . j. ^ .   ._ ., ... ■ ■1   > ■ .n   ■ 
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